e-ISSN 2248 – 9142 print-ISSN 2248 – 9134

International Journal of Current Pharmaceutical & Clinical Research

www.ijcpcr.com

AN OVERVIEW ON IMMUNOMODULATORS

Naga Preethi N and Rajeshwari P

Department Of Pharmacology, Rao's College of Pharmacy, Chemudugunta, Venkatachalam, Nellore, Andhra Pradesh, India.

ABSTRACT

The immune system is a complex and highly developed system in the body. The immune system is a part of body to detect the pathogen by using a specific receptor to produce immediately response by the activation. Immunomodulators are naturally present in the body, and certain of these are available in pharmacologic preparations. Immunomodulators correct immune systems that are out of balance. Some Immunomodulators are naturally present in the body, and certain of these are available in pharmacologic preparations. Knowledge of the mechanism of action of drugs provides targeted drug therapies so, synthetic immunomodulator drugs with their mechanism of action and uses have been listed out. Many botanical species have reported the immunomodulatory activity. It is based on the type of constituents present in the plant extracts so the list of Herbal plants with their chemical constituents and possible mechanism of action has been listed out. This review is an attempt to provide information regarding immune system and immunomodulatory agents.

Key words: Immune system, Immunomodulators.

INTRODUCTION

Immune system is a remarkably sophisticated defence system within vertebrates, to protect them from invading agents. It is able to generate varieties of cells and molecules capable of recognizing and eliminating limitless varieties of foreign and undesirable agents. Modulation of the immune system denotes to any change in the immune response that can involve induction, expression, amplification or inhibition of any part or phase of the immune response. Thus, immunomodulator is a substance for its effect on the immune system. used Immunopharmacology is a comparatively new and developing branch of pharmacology aims at searching for immunomodulators [1].

IMMUNE SYSTEM

Immune system is designed to protect the host from invading pathogens and to eliminate disease [2]. This ability enables the body to fight or prevent infectious disease and inhibit tissue and organ damage [3]. There are two types of immune response are occurs in the human body:

Immunomodulators

An Immunomodulator may be defined as a substance, biological or synthetic, which can stimulate, suppress or modulate any of the components of the immune system including both innate and adaptive arms of the immune response [5]. Immunomodulators are natural or synthetic substances that help regulate or normalize the immune system [6].

Clinically immunomodulators can be classified into following three categories: [7]

- Immunoadjuvants
- Immunostimulants
- Immunosuppressants

Immunoadjuvants: A non specific substance acting to enhance the immune response to an antigen with which it is administered. The immunoadjuvants hold the promise of being the true modulators of immune response [8].

Immunostimulants: Agents which are envisaged to enhance body's resistance against infections, they can act through innate immune response and through adaptive

Corresponding Author :- Naga Preethi N Email:- n.nagapreethi91@gmail.com

immune response [9].

Immunosuppressants: Agents which suppress the immune system and are used for the control of pathological immune response in autoimmune disease, graft rejection etc. [6].

Drugs Used For Immunomodulators

All drugs which modify immune response generally categorized as immunomodulators and also used for the prevention (or) cure of some infective conditions and also in management of cancer. These can either function as:

1. Immunosuppressants.

2. Immunostimulants.

Immunosuppressant Drugs

Table 1. Types of Immune response

These are used to dampen the immune response in organ transplantation and autoimmune disease [6].

Immunostimulant Drugs

In contrast to immunosuppressive agents that inhibit the immune response in transplant rejection and autoimmunity, a few immunostimulatory drugs have been developed with applicability to infection, immunodeficiency, and cancer. These works on cellular as well as humoral immune system or both [6].

Herbal Plants as Immunomodulators

Herbal Plants have been used since ancient times for the treatment of various diseases and disorders. Plants with immunomodulators activity are reported in detail below as per the parts used: Fruits, Leaves, Seeds, Flowers, Roots, Bark.

Table 1. Typ	able 1. Types of minimum response		
1.	Innate immune response	Response is non-specific.	
		Exposure leads to immediate maximal response.	
		Pathogen and antigen specific response.	
2.	Adaptive immune response	Lag time between exposure and maximal response.	
		Exposure leads to immunological memory.	
		Cellular mediated response & humoral response.	

Table 2. The Cells of the Immune System: [4]

CELL TYPE	FUNCTION	
Helper T cell	Commander of the immune response; detects infection and sounds the alarm, initiating both T	
(CD4+T cell)	cell and B cell responses.	
Inducer T cell	Not involved in the immediate response to infection; mediates the maturation of other T cells in	
	the thymus.	
Cytotoxic T cell	Detects and kills infected body cells; recruited by helper T cells.	
Suppressor T cell	Dampens the activity of T and B cells, scaling back the defense after the infection has been	
(CD8+T cell)	checked.	
B cell	Precursor of plasma cell; production of antibodies in response to foreign proteins of bacteria,	
	viruses, and tumor cells.	
Plasma cell Biochemical factory devoted to the production of antibodies directed against specific		
	antigens.	
Mast cell Initiator of the inflammatory response which aids the arrival of leukocytes at a sit		
	secretes histamine and is important in allergic responses.	
Monocyte	Precursor of macrophage.	
Macrophage	ge The body's first cellular line of defense; also serves as antigen-presenting cell to B and T cell	
	and engulfs antibody covered cells. Important in the regulation of immune response.	
Natural killer cell	Function as effector cell. Recognizes and kills infected body cells; natural killer (NK) cell	
	detects and kills cells infected by a broad range of invaders; killer (K) cell attacks only antibody-	
	coated cells.	
Dendritic cell	It orginate in the bone marrow, function as antigen presenting cells (APC). These cells are found	
	in the structural compartment of the lymphoid organs. These cells bind high amount to HIV.	
	Granulocytes are composed of three cell types identified as neutrophils, eosinophils and	
Granulocytes (or)	basophils. These cells are predominantly important in the removal of bacteria and parasites from	
Polymorphonuclear	the body. They engulf these foreign bodies and degrade them using their powerful enzymes.	
(PMN) Leukocytes		

DRUG	SITE OF ACTION	THERAPEUTIC USE
Glucocorticoids	Inhibitors of lymphocyte gene expression.	Acute transplant rejection, graft-versus-host
		disease in bone marrow transplantation,
		rheumatoid and other arthritides.
Cyclosporine	Calcineurin inhibitors & inhibitors of	Kidney, liver, heart, and other organ
	lymphocyte signaling.	transplantation, rheumatoid arthritis and psoriasis.
Tacrolimus	Calcineurin inhibitors & inhibitors of	Prophylaxis of solid-organ allograft rejection,
	lymphocyte signaling.	kidney transplantation.
Sirolimus	Inhibitors of lymphocyte signaling & mTOR	Organ transplant inhibitor, graft rejection,
	(mammalian target of rapamycin) Inhibitors.	incorporated into stents
		to inhibit local cell proliferation.
Azathioprine	Cytotoxic Agents to reduce lymphocyte	Allogeneic kidney transplantation, organ
	proliferation & Antimetabolites.	transplant rejection.
Mycophenolate	selectively inhibits lymphocyte proliferation	Prophylaxis of transplant rejection, renal
Mofetil	and functions including antibody formation,	transplantation.
	cellular adhesion, and migration.	
Cyclophosphamide	immunosuppressant as it suppresses	Autoimmune disorders in patients with acquired
	B-lymphocyte proliferation but can enhance T-	factor XIII antibodies and bleeding syndromes,
	cell responses.	autoimmune hemolytic anemia, Wegener's
		granulomatosis.
Etanercept	Prevent TNF α from binding to membrane	Rheumatoid arthritis, psoriatic arthritis.
	bound TNFR1 &TNFR ₂	
Infliximab	Cytokines inhibitors& Chimeric monoclonal	It currently used in Cronh's disease and
	antibody obtained by exposing the mice to	rheumatoid arthritis.
	human TNF- α , prevent the release of other	
	proinflammatory cytokines.	
Adalimumab	Cytokine inhibitors & human recombinant	Rheumatoid arthritis.
	monoclonal antibody to TNF- α .	
Antithymocyte	Antibodies Against Specific Immune Cell	Acute renal transplant rejection, recovery from
Globulin (ATG)	Molecules & polyclonal antibodies.	ischemic reperfusion injury.
Muromunab	Monoclonal antibodies.	Acute organ transplant rejection.

Table 3. Classification of Immunosuppressants

Table 4. Classification of Immunostimulants

DRUG	SITE OF ACTION	THERAPEUTIC USE	
		Treatment and prophylaxis of carcinoma of the	
		urinary bladder, prophylaxis of primary and	
Bacillus Calmette-	Antigen processing and / or recognition	recurrent stage Ta and/or T1 papillary	
Guerin (BCG)		tumors after transurethral resection.	
	Antibody production (inhibition of interleak 1-	Adjuvant therapy with 5-fluorouracil after surgical	
Levamisole	2 production), amplification, antigen	resection in patients with Duke's stage C colon	
	processing/ recognition.	cancer, agranulocytosis.	
	Decrease circulating TNF- α in patients with	Severe, refractory rheumatoid arthritis.	
Thalidomide	erythema nodosum leprosum, but to increase it		
	in patients who are HIV-seropositive.		
Recombinant cytokines:			
TYPES	MODE OF ACTION	THERAPEUTIC USES	
Interferons	Induction of certain enzymes, inhibition of cell	Hairy cell leukemia, malignant melanoma,	
	proliferation, and enhancement of immune	follicular lymphoma, AIDS related Kaposi's	
	activities, including increased phagocytosis by	sarcoma, chronic hepatitis B and condylomata	
	macrophages and augmentation of specific	acuminate.	
	cytotoxicity by T		
	lymphocytes.		
Interleukins	Cellular immunity is profoundly activated with	Metastatic renal cell carcinoma and melanoma.	
	lymphocytosis, eosinophilia,		

	thrombocytopenia, and release of multiple	
	cytokines.	
Colony stimulating	Increases the number and differentiation of	Leucopenia, ganciclovirinduced neutropenia.
Factor	myeloid progenitors.	
DRUG	SITE OF ACTION	THERAPEUTIC USES
	Increases proliferation of lymphocytes in	Herpes simplex infections, subacute sclerosing
Isoprinosine	response to mitogenic or antigenic stimuli,	panencephalitis, acute viral encephalitis caused by
	increases active T-cell rosettes and induces T-	herpes simplex, Epstein-Barr and measles viruses.
	cell surface markers on prothymocytes.	
	Stable form of haemocynin, a non-haeme,	Urinary bladder cancer.
Immunocynin	oxygen carrying, copper-containing protein	
	found in arthropods and molluses.	

Table 5. List of Plants Investigated Pharmacologically For Immunomodulatory Activity

BOTANICAL SOURCE	CHEMICAL CONSTITUENT	IMPACT FACTORS
FLOWERS		
Couropita guianensis	Steroids, Phenolics, flavonoids,	Immunostimulant activity on both specific and
(Lecythidaceae) [10]	glycosides, carbohydrates and protiens.	non-specific immune mechanisms.
Hibiscus sabdariffa		Immunostimulatory activity with increase in
(Malvaceae) [11]		production of Anti-inflammatory cytokine, IL-10
A 1' 1 ' 1'		and reduction in tissue necrosis factor –alpha.
Azaairachta inaica		Stimulates both specific and nonspecific immune
(Mellaceae)[12]		responses. Potent immunostimulant against
		cytotoxic drug.
ROOTS	1	1
Withania somnifera	Steroidal Lactones (Withanolides),	Immunomodulator to counteract undesirable
(Solanaceae) [13]	Polysaccharides, lectins, Proteins and	effects of myelosuppressive drugs. Stimulates the
	peptides.	haemopoetic system and also enhances the
		differentiation of stem cells.
Boerhavia diffusa	Alkaloids, carbohydrates, glycosides,	Roots possess antistress, adaptogenic and
(Nyctaginaceae) [14]	triterpenoids, steroids, phenols and	immunopotentiating activity.
	tannins.	
Calophyllum brasiliense		Immunostimulant.
(Clusiaceae) [15]		
Clerodendrum phlomidis	B-sitosterol & γ -Sitosterol, Cetyl	Immunomodulator.
[16]	alcohol, Clerodin, Clerosterol,	(Higher response to specific immunity as
	Clerodendrin, Flavonoids-	compared to non specific immunity)
	lutaclin	
Prompa integrifolia	Premnine Ganikarine Premnazole	Immunomodulator (Higher response to specific
[16]	Flavonoids luteolin sterols and	immunity as compared to non specific immunity)
[10]	ternenes	initiality as compared to non-specific initiality)
Baliospermum montanum	Tannins, Saponins, Flavonoids,	Immunostimulant.
(Euphorbiaceae) [17]	Glycosides.	

BOTANICAL SOURCE	CHEMICAL COUNSTITUENTS	IMPACT FACTORS
LEAVES		
Ocimum sanctum	Ascorbic acid and flavonoids	Ascorbic acid and flavonoids isolated from the leaf
(Lamiaceae)		possess potent immunostimulant activity, but in
[18]		combination showed synergistic activity it might

		be due to antioxidant property.
Aloe vera (Liliaceae) [19]		Potential candidate in several immunosuppressed
Cassia auriculata	Pet. Ether extract-steroids Alcoholic &	Significant immunostimulant effect on cell
(Caesalpiniaceae) [20]	Aqueous Extract-Alkaloids, Flavonoids,	mediated immunity and no effect on Humoral
	Tannins, Phenolics.	immunity.
Tridax procumbens	Flavones, Glycoside, Polysaccharide,	Stimulatory effect on humoral immunity and
(Compositae) [21]	Monosaccharide, Asteraceae.	stimulated phagocytosis and offered protection
		against P. aeruginosa infection.

SEEDS		
Mucuna Pruriens		It produces inhibitory effect and suggests its use in
(Fabaceae) [22]		inflammatory disorders.
FRUITS		
Trapa bispinosa (trapaceae)	Alkaloids, carbohydrates, starch,	Promising immunostimulatory activity.
[23]	tannins, phenolic compounds & saponin	
	glycosides.	
Terminalia belerica	Gallic acid, ellagic acid, ethyl gallate,	T. belerica shows immunosuppressant effect at
(Combretaceae) [24]	chebulic acid, β -sitosterol, 3-lignans &	low concentration while stimulatory activity at
	one flavan.	high concentration.
BARK		
Alstonia boonei	Alkaloids – Indole, terpenes, lactones &	Anticomplementary action may be beneficial in
(Apocyanaceae)	Steroids, Triterpenes – a & b ammyrin &	rheumatoid arthritis.
[25]	lupeol.	
Acacia catechu	Catechin and epicatechin.	The aqueous extracts of Acacia catechu have
(Leguminosae)		significant effect on both the cell mediated and the
[26]		humoral immunity. Low dose was more effective
		as compared to the higher dose.
Bauhinia variegata	Tannins, steroids, alkaloids, flavonoids,	Immunostimulant activity on both specific and
(Caesalpiniaceae) [27]	β sitosterol, lupeol, vitamin C,	non-specific immune system.
	kaempferol, flavones, quercetin &	
	saponins.	× • •
Matayba elaegnoides		Immunostimulant.
(Sapindaceae) [15]		
AERIAL PARTS		
Alternanthera tenella Colla	Fatty acids, flavonoids, polysaccharides,	Inhibitory action on B-lymphocyte fuction, Reduce
(Amaranthaceae) [28]	tritepenes, Glycosides & saponins.	Simultaneous immunestimulators and
		simultaneous immunostimulatory and
Unitia auguro clong	Valatila Oil	Immunosuppressive activity.
Hyptis suaveolens	Volatile Oli	Immunosummulant.
(Lamaceae)[29]	Eleveneide	Immunomodulatory offect
(Astaracaaa)[30]	Flavoliolus	minunomodulatory effect.
(Aster squamatus	Elevonoide	Immunomodulatory affect
(Asteraceae)[30]	riavonoids	minutomodulatory critect.
Glebionis coronaria	Flavonoids	Immunomodulatory effect
(Asteraceae) [30]		minutonodulatory critect.
Calendula arvensis	Flavonoids	Immunomodulatory effect
(Asteraceae) [31]		
Carlina involucrate	Flavonoids	Immunomodulatory effect
(Asteraceae)		
Galactities tomentosa	Flavonoids	Immunomodulatory effect.
(Asteraceae)		
Inula crithmoides	Flavonoids	Immunomodulatory effect
	1 10, 010100	

		-	
(Asteraceae)			
Leontodon tuberosus	Flavonoids	Immunomodulatory effect.	
(Asteraceae)			
Reichardia picroides	Flavonoids	Immunomodulatory effect.	
(Asteraceae)			
Sonchus oleraceus	Flavonoids	Immunomodulatory effect.	
(Asteraceae)			
WHOLE PLANT [31]			
Ipomea pes		Immunostimulant.	
caprae(Convolvulaceae)			

Immune Response Fig 2. Schematic Representation of Immune Response

CONCLUSION

Immunomodulators are becoming very popular in the worldwide natural health industry as people start to realize the importance of a health immune system in the maintenance of health and the prevention of disease. This review provides the information regarding mechanism, cells that are involved and both synthesis as well as herbal immunomodulators in one window.

REFERENCES

- 1. Bomford R. Ethnomedicine: A Source of Complementary Therapeutics, 159(2), 2010, 227-244.
- 2. Sharma P, Samhita C, Chikitasasthana, Chaukhamba O. Varanasi, India, 1983, 54.
- 3. Sharma R, Rohilla A, Arya V. International Journal of Pharmaceutical Sciences Review and Research, 9(2), 2011, 20-21.
- 4. www.mhhe.com/biosci/genbio/raven6b/graphics/.../raven06_57
- 5. Yamamoto K. Elimination of minimal residual leukemic cells by biological response modifiers. *Rinsho Ketsueki*, 37, 1996, 666-670.
- 6. Patil US, Jaydeokar AV, Bandawane DD. Immunomodulators: A Pharmacological Review. International Journal of Pharmacy and Pharmaceutical Sciences, 4(Suppl 1), 2012, 1.
- 7. Arya V, Gupta VK. International journal of pharmacy & life sciences, 2(5), 2011, 751-758.
- 8. Agarwal S, Singh VK. Part 1: Medicinal plants. PINSA, B 65(3-4), 1999, 179-204.
- 9. Billiau A, Matthys P. Journal of Leukocyte Biology, 70, 2001, 850-860.
- 10. Pradhan D, Panda PK, Tripathy G. Natural Product Radiance, 2009, 37-42.
- 11. Titilayo F. Fakeye Afr J Trad CAM, 5, 2008, 394-398.
- 12. Wafaa AH, Hassan A and Nefisa MA. EL-Shayeb. J Appl Sci Res, 3(10), 2007, 1050-1055.
- 13. Ahmed A, Yehia H, Mohmmed A. Scientific Journal of King Faisal University (Basic and Applied Sciences), 8, 2007, 73-89.
- 14. Meera S, Mustafa SS. Int J Pharmacol, 3, 2007, 416-420.
- 15. Marina EP, Bruna MD, Carolina VDS, Michel TD, Rivaldo N, Valdir CF, Edneia CB. Acta Pol Pharm Drug Research, 67, 2010, 69-73.
- 16. Gokhani RH, Lahiri SK, Santani DD, Shah MB. Int J Pharmacol, 3, 2007, 352-356.
- 17. Raju RW, Sagar VA, Kunal MT, Rohan DS, Shirin M, Kalpana P. International Journal of Green Pharmacy, 2, 2008, 46-49.
- 18. MS Kondawar, SB Bhise. IJPER, 40(3), 2006, 178-182.
- 19. Jyotsana M, Arun KS, Nazma I, Harwinder SR, Ramnik S. International Journal of Green Pharmacy, 2006, 152-154.
- 20. Chakraborthy GS. IJPRIF, 1, 2009, 132-134.
- 21. Oladunmoye MK. International Journal of Tropical Medicine, 1, 2006, 152-155.
- 22. Mallurwar VR, Joharapurkar AJ, Duragkar NJ. IJPER, 40, 2006, 205-207.
- 23. Samir P, David B, Otilia JFB, Patel MM, Shah KK. Int J Res Pharm Sci, 1, 2010, 13-19.
- 24. Aurasorn S, Pattana S, Kornkanok I. Mj Int J Sci Tech 2, 2008, 400-407.
- 25. Taiwo OB, Van den berg AJJ, Kroes BH, Beukelman CJ, Horsten SFAJ. Indian J Pharmacol, 30, 1998, 169-174.
- 26. Syed I, Mohammed A. Indian J Physio Pharmacol, 53, 2009, 25-33.
- 27. Ghaisas MM, Shaikh SA, Deshpande AD. International Journal of Green Pharmacy, 2009, 70-74.
- 28. Carla AB, Marcos JS, Diones AD, Marcelo DB, Luciana SP. Mem Inst Oswaldo Cruz, Rio de Janeiro, 103, 2008, 569-577.
- 29. Suman J, Vinay J, Deepak B, RC Jat, Sudhir B. IJPRD, 2010, 11.
- 30. Attard E, Cuschieri A. Journal of Medicinal Plants Research, 3, 2009, 457-461.
- 31. Sheetal V, Singh SP. Current and future status of herbal medicines. Veterinary World, 1(11), 2008, 347-350.